When your site requires the highest strength and performance available, protect your soils with a system that combines the RollMax™ VMax® Turf Reinforcement Mats (TRMs) with percussion earth anchors. The earth anchors reach deep into the soil strata to offer enhanced anchoring in the worst conditions, while our TRMs provide permanent protection of soils and vegetation. Our variety of earth anchors are designed for durability and holding power under extreme hydraulic stresses and adverse soil conditions. And, when our earth anchors are used in combination with one of our high-performance TRMs, offer unmatched performance.

Experience You Can Rely On

Tensar North American Green is the world’s leading provider of performance-guaranteed erosion control solutions. For more than 25 years, our line of erosion and sediment control products has kept our customers on solid ground. The RollMax™ Systems’ family of Rolled Erosion Control Products (RECPs) is solid evidence of Tensar North American Green’s ongoing investment in innovation. Our short-term and long-term ECBs and TRMs keep you one step ahead of just about any erosion challenge. We have developed integrated systems and products with the sole objective to ensure absolute customer satisfaction. Our products are backed by the most thorough quality assurance practices in the industry. And, we provide comprehensive design assistance for every Tensar system.

Tensar North American Green provides everything you need to know for quick, accurate erosion control installation tailored to your site. From start to finish, our RollMax Systems’ product installation instructions are based on extensive research and field-proven techniques to ensure project success. The following pages offer instructions and guidelines for several scenarios you may encounter during the installation of RollMax TRMs with percussion earth anchors.

For additional installation assistance, please call 800-TENSAR-1, visit www.tensarnagreen.com or e-mail info@tensarcorp.com and we will be happy to put you in touch with an erosion control specialist who can assist you.
When your site requires the highest strength and performance available, protect your soils with a system that combines the RollMax™ VMax® Turf Reinforcement Mats (TRMs) with percussion earth anchors. The earth anchors reach deep into the soil matrix to anchor the products in the worst conditions, while our TRMs provide permanent protection of soils and vegetation. Our variety of earth anchors are designed for durability and field tested under extreme hydraulic stresses and adverse soil conditions (Table 1). And, when our earth anchors are used in combination with one of our high-performance TRMs, often unmatched performance.

EXPERIENCE YOU CAN RELY ON

North American Green is the world’s leading provider of performance guaranteed erosion control solutions. For more than 25 years, our line of erosion and sediment control products has kept our customers on solid ground. The RollMax™ Systems’ family of Rolled Erosion Control Products (RECPs) is solid evidence of North American Green’s ongoing investment in innovation. Our short-term and long-term ECBs and TRMs keep you one step ahead of any erosion challenge. We have developed integrated systems and products with the sole objective to ensure absolute customer satisfaction. Our products are backed by the strength through quality assurance practices in the industry, and we provide comprehensive design assistance for every system.

North American Green provides everything you need to know for quick, accurate erosion control installation tailored to your site. From start to finish, our RollMax Systems’ product installation instructions are based on extensive research and field-proven techniques to ensure project success. The following pages offer instructions and guidelines for several scenarios you may encounter during the installation of RollMax TRMs with percussion earth anchors.

For additional installation assistance on SediMax Systems, please call 800-772-2040, visit nagreen.com or e-mail info@nagreen.com and we will be happy to put you in touch with your erosion control specialist who can assist you.

Earth Anchor Options

<table>
<thead>
<tr>
<th>Tendon Type</th>
<th>Grip/Hold</th>
<th>Assembly Description</th>
<th>Fast</th>
<th>Economic</th>
<th>Anchor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper Snap</td>
<td>Grip Only</td>
<td>Manually crimped to the stainless steel cable to secure the face plate.</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Copper Snap</td>
<td>Grip/Hold</td>
<td>Manually crimped to the stainless steel cable to secure the face plate.</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Grip End Piece</td>
<td>Grip Only</td>
<td>Three-dimensional, self-securing metal end piece that does not require manual crimping for tendon tensioning.</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Grip End Piece</td>
<td>Grip/Hold</td>
<td>Three-dimensional, self-securing metal end piece that does not require manual crimping for tendon tensioning.</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Wedge Grip Piece</td>
<td>Grip Only</td>
<td>Self-securing end piece that installs flush to the face plate.</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Wedge Grip Piece</td>
<td>Grip/Hold</td>
<td>Self-securing end piece that installs flush to the face plate.</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Table 1

<table>
<thead>
<tr>
<th>Tendon Type</th>
<th>Grip/Hold</th>
<th>Assembly Description</th>
<th>Fast</th>
<th>Economic</th>
<th>Anchor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper Snap</td>
<td>Grip Only</td>
<td>Manually crimped to the stainless steel cable to secure the face plate.</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Copper Snap</td>
<td>Grip/Hold</td>
<td>Manually crimped to the stainless steel cable to secure the face plate.</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Grip End Piece</td>
<td>Grip Only</td>
<td>Three-dimensional, self-securing metal end piece that does not require manual crimping for tendon tensioning.</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Grip End Piece</td>
<td>Grip/Hold</td>
<td>Three-dimensional, self-securing metal end piece that does not require manual crimping for tendon tensioning.</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Wedge Grip Piece</td>
<td>Grip Only</td>
<td>Self-securing end piece that installs flush to the face plate.</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Wedge Grip Piece</td>
<td>Grip/Hold</td>
<td>Self-securing end piece that installs flush to the face plate.</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
GENERAL INSTALLATION

1. Prepare site by installing the HPTRM Mat (HPTRM), including any necessary application of sub-base materials and/or other components to achieve the design intent.

2. See Seeding and vegetating section for details regarding preplanting, seeding, and vegetating.

3. Begin at the top of the slope by anchoring the HPTRM to a (30 cm) deep (15 cm) wide mesh anchor (6 in. x 6 in. grate) positioned 4 in. (10 cm) away from each end of the HPTRM.

4. Trench back to the point where the HPTRM will unroll with appropriate side against the soil surface. HPTRM should not overlap any portion of the trench. Secure HPTRM against the soil surface using staples/stakes spaced approximately 12 in. (30 cm) apart in a semi-circular pattern across the width of the HPTRM.

5. Anchor the HPTRM with a row of anchors/staples approximately 12 in. (30 cm) apart in the bottom of the trench. Backfill and compact the trench after stapling.

6. The HPTRM should be overlapped approximately 4 in. (10 cm) along adjacent HPTRMs to allow for movement to prevent displacement of the matting due to wind or water flow.

7. A hooked setting tool may be used to drive the manual drive anchor. If using a self-tensioning end-piece (grip or wedge) set by simply tightening the end-piece against the mat.

8. Larger anchors may require more force to set the anchor. This can be achieved through greater leverage, using a sledge hammer or vibratory hammer to drive the percussion earth anchor assembly into the soil.

GENERAL INSTALLATION - Channel Installation Detail

1. Prepare site by installing the HPTRM Mat (HPTRM), including any necessary application of sub-base materials and/or other components to achieve the design intent.

2. Trench back to the point where the HPTRM will unroll with appropriate side against the soil surface. HPTRM should not overlap any portion of the trench. Secure HPTRM against the soil surface using staples/stakes spaced approximately 12 in. (30 cm) apart in a semi-circular pattern across the width of the HPTRM.

3. If using a copper or aluminum stop, crimp the ferrule to secure. If using a self-tensioning end-piece (grip or wedge) grip, simply tighten the end-piece against the mat without force. If desired, install the remaining cable assembly, above and below, to desired length.

4. Place HPTRM and over end (staple/stick) with a 4 in. x 4 in. (10 cm x 10 cm) overhang. Low profile staple (stake) inserted approximately 12 in. (30 cm) apart in order to secure to the soil below. Use either a sledge hammer or vibratory hammer to drive the percussion earth anchor assembly into the soil.

5. All length edge of HPTRM at top of slope must be anchored with a row of staples/stakes approximately 4 in. (10 cm) apart. Each row is critical to the anchoring system. Staples/stakes must be placed as close as possible to the edge of the HPTRM.

6. Full length edge of HPTRM at top of slope must be anchored with a row of staples/stakes approximately 4 in. (10 cm) apart. Each row is critical to the anchoring system. Staples/stakes must be placed as close as possible to the edge of the HPTRM.

7. Trench back to the point where the HPTRM will unroll with appropriate side against the soil surface. HPTRM should not overlap any portion of the trench. Secure HPTRM against the soil surface using staples/stakes spaced approximately 12 in. (30 cm) apart in the bottom of the trench. Backfill and compact the trench after stapling.

ANCHORING DETAIL

The performance of groundanchoring devices is highly dependent on the design preference of specific variables. The primary responsibility of the project engineer is to select the appropriate anchor type and installation method. Anchoring detail is selected to be held to the maximum intensity such that the soil subgrade and adjacent pullout in accordance with the project’s design intent.

1. Staples and/or stakes should be to at least 0.5 ft (15 cm) in length to ensure sufficient ground penetration to prevent pullout. Longer staples and/or stakes may be needed to accommodate transitional segments.

2. The percussion earth anchor assembly consists of an anchor rod, an anchor head, and a cable. See “Tanco® North American Green® Earth Anchor Spec Sheet for detailed materials takeoff and compatability and associated pull-out strength.

PERCUSSION EARTH ANCHOR INSTALLATION

1. Insert the HPTRM into the assembly by inserting the end-piece into the anchor head of the percussion earth anchor assembly and lock the end-piece, at the desired anchor depth.

2. After the desired anchor depth is achieved, retract the tendon.

3. The absence of an end-piece allows the cable to be pulled upwards until the anchor head rotates as signaled by sudden upward resistance to pulling. A hooked setting tool may be used to pull upwards.

6. Secure if using a self-tensioning end-piece (grip or wedge) grip, simply tighten the end-piece against the mat without force. If desired, install the remaining cable assembly, above and below, to desired length.

SELECTING AND VEGETATING

When using a Composite Turf Reinforcement Mat (CTRM) with fiber component:

1. Pre-soil prepared soils prior to the installation of the CTRM. In-situ seeding, as directed, is the preferred method of re-seeding prepared soils prior to the installation of the CTRM. Additional seeding is not recommended in high-flow conditions. Sodded areas should be maintained and stroked regularly to ensure root growth.

2. Anchoring detail. The performance of ground anchoring devices is highly dependent on the design preference of specific variables. The primary responsibility of the project engineer is to select the appropriate anchor type and installation method. Anchoring detail is selected to be held to the maximum intensity such that the soil subgrade and adjacent pullout in accordance with the project’s design intent.

3. Staples and/or stakes should be to at least 0.5 ft (15 cm) in length to ensure sufficient ground penetration to prevent pullout. Longer staples and/or stakes may be needed to accommodate transitional segments.

5. Secure if using a self-tensioning end-piece (grip or wedge) grip, simply tighten the end-piece against the mat without force. If desired, install the remaining cable assembly, above and below, to desired length.
GENERAL INSTALLATION
1. Prepare site before installing the HPTRM into the soil, advanced any necessary field adjustments such as line or baseline. See seeding and planting groups for detailed information on assembly components and associated pull-out strength.

3. Install matting as directed. HPTRM does not require soil infill and soil-fill as outlined above. Place sod directly onto the C-TRM. Additional seeding shall be recommended for high flow conditions. Additional Mulching of the use of a temporary or composite turf (ETM) is recommended for fiber components.

ANCHORING DETAIL
1. Place reinforcing mat (HPTRM) surface by locking the end piece to secure. If using a castellated end piece (grey or white) work to tightly acting the end piece against the framing. If desired, the remaining cable assembly, above and down to desired length.

3. Carefully lock the reinforcing mat (HPTRM) surface by locking the end piece (see the anchoring detail).

2. See seeding and planting section for details regarding seeding, growing, and planting. Seed may be installed in place of seeding on top of the C-TRM. Additional mulching is recommended in high flow conditions. Sodded areas should be irrigated until rooting occurs.

5. The performance of ground anchoring devices highly dependent on information site-specific variables. It is the responsibility of the project engineer and contractor to select the appropriate anchor type and length. Anchoring shall be selected to hold the mat in an inextensible manner with the soil subgrade and must publish in accordance with the project's design intent.

4. The performance of ground anchoring devices highly dependent on information specific variables. It is the responsibility of the project engineer and contractor to select the appropriate anchor type and length. Anchoring shall be selected to hold the mat in an inextensible manner with the soil subgrade and must publish in accordance with the project's design intent.

ANCHORING DETAIL
1. Place reinforcing mat (HPTRM) surface by locking the end piece to secure. If using a castellated end piece (grey or white) work to tightly acting the end piece against the framing. If desired, the remaining cable assembly, above and down to desired length.

3. Carefully lock the reinforcing mat (HPTRM) surface by locking the end piece (see the anchoring detail).

2. See seeding and planting section for details regarding seeding, growing, and planting. Seed may be installed in place of seeding on top of the C-TRM. Additional seeding shall be recommended for high flow conditions. Sodded areas should be irrigated until rooting occurs.

5. The performance of ground anchoring devices highly dependent on information site-specific variables. It is the responsibility of the project engineer and contractor to select the appropriate anchor type and length. Anchoring shall be selected to hold the mat in an inextensible manner with the soil subgrade and must publish in accordance with the project's design intent.

ANCHORING DETAIL
1. Place reinforcing mat (HPTRM) surface by locking the end piece to secure. If using a castellated end piece (grey or white) work to tightly acting the end piece against the framing. If desired, the remaining cable assembly, above and down to desired length.

3. Carefully lock the reinforcing mat (HPTRM) surface by locking the end piece (see the anchoring detail).

2. See seeding and planting section for details regarding seeding, growing, and planting. Seed may be installed in place of seeding on top of the C-TRM. Additional seeding shall be recommended for high flow conditions. Sodded areas should be irrigated until rooting occurs.

5. The performance of ground anchoring devices highly dependent on information site-specific variables. It is the responsibility of the project engineer and contractor to select the appropriate anchor type and length. Anchoring shall be selected to hold the mat in an inextensible manner with the soil subgrade and must publish in accordance with the project's design intent.

ANCHORING DETAIL
1. Place reinforcing mat (HPTRM) surface by locking the end piece to secure. If using a castellated end piece (grey or white) work to tightly acting the end piece against the framing. If desired, the remaining cable assembly, above and down to desired length.

3. Carefully lock the reinforcing mat (HPTRM) surface by locking the end piece (see the anchoring detail).

2. See seeding and planting section for details regarding seeding, growing, and planting. Seed may be installed in place of seeding on top of the C-TRM. Additional seeding shall be recommended for high flow conditions. Sodded areas should be irrigated until rooting occurs.

5. The performance of ground anchoring devices highly dependent on information site-specific variables. It is the responsibility of the project engineer and contractor to select the appropriate anchor type and length. Anchoring shall be selected to hold the mat in an inextensible manner with the soil subgrade and must publish in accordance with the project's design intent.

ANCHORING DETAIL
1. Place reinforcing mat (HPTRM) surface by locking the end piece to secure. If using a castellated end piece (grey or white) work to tightly acting the end piece against the framing. If desired, the remaining cable assembly, above and down to desired length.

3. Carefully lock the reinforcing mat (HPTRM) surface by locking the end piece (see the anchoring detail).

2. See seeding and planting section for details regarding seeding, growing, and planting. Seed may be installed in place of seeding on top of the C-TRM. Additional seeding shall be recommended for high flow conditions. Sodded areas should be irrigated until rooting occurs.

5. The performance of ground anchoring devices highly dependent on information site-specific variables. It is the responsibility of the project engineer and contractor to select the appropriate anchor type and length. Anchoring shall be selected to hold the mat in an inextensible manner with the soil subgrade and must publish in accordance with the project's design intent.

ANCHORING DETAIL
1. Place reinforcing mat (HPTRM) surface by locking the end piece to secure. If using a castellated end piece (grey or white) work to tightly acting the end piece against the framing. If desired, the remaining cable assembly, above and down to desired length.

3. Carefully lock the reinforcing mat (HPTRM) surface by locking the end piece (see the anchoring detail).

2. See seeding and planting section for details regarding seeding, growing, and planting. Seed may be installed in place of seeding on top of the C-TRM. Additional seeding shall be recommended for high flow conditions. Sodded areas should be irrigated until rooting occurs.

5. The performance of ground anchoring devices highly dependent on information site-specific variables. It is the responsibility of the project engineer and contractor to select the appropriate anchor type and length. Anchoring shall be selected to hold the mat in an inextensible manner with the soil subgrade and must publish in accordance with the project's design intent.

ANCHORING DETAIL
1. Place reinforcing mat (HPTRM) surface by locking the end piece to secure. If using a castellated end piece (grey or white) work to tightly acting the end piece against the framing. If desired, the remaining cable assembly, above and down to desired length.

3. Carefully lock the reinforcing mat (HPTRM) surface by locking the end piece (see the anchoring detail).

2. See seeding and planting section for details regarding seeding, growing, and planting. Seed may be installed in place of seeding on top of the C-TRM. Additional seeding shall be recommended for high flow conditions. Sodded areas should be irrigated until rooting occurs.

5. The performance of ground anchoring devices highly dependent on information site-specific variables. It is the responsibility of the project engineer and contractor to select the appropriate anchor type and length. Anchoring shall be selected to hold the mat in an inextensible manner with the soil subgrade and must publish in accordance with the project's design intent.

ANCHORING DETAIL
1. Place reinforcing mat (HPTRM) surface by locking the end piece to secure. If using a castellated end piece (grey or white) work to tightly acting the end piece against the framing. If desired, the remaining cable assembly, above and down to desired length.

3. Carefully lock the reinforcing mat (HPTRM) surface by locking the end piece (see the anchoring detail).

2. See seeding and planting section for details regarding seeding, growing, and planting. Seed may be installed in place of seeding on top of the C-TRM. Additional seeding shall be recommended for high flow conditions. Sodded areas should be irrigated until rooting occurs.

5. The performance of ground anchoring devices highly dependent on information site-specific variables. It is the responsibility of the project engineer and contractor to select the appropriate anchor type and length. Anchoring shall be selected to hold the mat in an inextensible manner with the soil subgrade and must publish in accordance with the project's design intent.

ANCHORING DETAIL
1. Place reinforcing mat (HPTRM) surface by locking the end piece to secure. If using a castellated end piece (grey or white) work to tightly acting the end piece against the framing. If desired, the remaining cable assembly, above and down to desired length.

3. Carefully lock the reinforcing mat (HPTRM) surface by locking the end piece (see the anchoring detail).

2. See seeding and planting section for details regarding seeding, growing, and planting. Seed may be installed in place of seeding on top of the C-TRM. Additional seeding shall be recommended for high flow conditions. Sodded areas should be irrigated until rooting occurs.

5. The performance of ground anchoring devices highly dependent on information site-specific variables. It is the responsibility of the project engineer and contractor to select the appropriate anchor type and length. Anchoring shall be selected to hold the mat in an inextensible manner with the soil subgrade and must publish in accordance with the project's design intent.
Slope and Levee Installation Detail

1. Prepare surface including the High-Performance Turf Reinforcement Mat (HPTRM), including any necessary application of soil amendments achieved through using simple mechanical equipment for greater leverage, or vibro-hammer driven earth anchors.

2. See seeding and vegetating section for details regarding preceding, seeding, and soil amendments.

3. Begin at the top of the slope by anchoring the HPTRM (4A) at the top of the side slopes must be anchored with a row of anchors/staples/stakes ~15 cm apart and 15 cm on center. See HPTRM standard for fibercontent components and associated pull-out strength.

4. Anchoring Detail

 - The performance of ground anchors is highly dependent on variables in project specific variables, such as the range of the project and the load for installation, the select the appropriate anchor type and length. Anchoring should be selected based on the local environmental conditions such as the soil substrates and root pullout in accordance with the project’s design intent.

 - Staples and/or stakes should be at least 6 in. (15 cm) in length and 2 in. (5 cm) in diameter, with an appropriate row of staples/stakes (15 cm) apart in 30 cm on center to secure HPTRM.

 - Full length edge of HPTRM is at top of side slopes must be anchored with a row of staples/stakes (15 cm) apart in 30 cm on center.

 - All surface water flow in the mat and into subgrade occurs. Additional staking of sod is recommended in high-flow channels, for example, proposed in place of seeding on top of the C-TRM.

 - Larger anchors may require more force to set the anchor. This can be achieved through using a temporary Permanent Anchoring System (PSR) instead of a wedge or a self-tensioning option as detailed in the manual. "Loose soil fill" is used in the term "flush fill" as defined in the manual. A high-flow channel applications, a staple/stake check slot is recommended in high-flow channel conditions. Guided anchor should be embedded and installed into the soil to their desired depth.

Channel Installation Detail

1. Channel Installation Detail Anchoring Detail

 - Place HPTRM (4A) at the top of the side slopes must be anchored with a row of anchors/staples/stakes ~15 cm apart and 15 cm on center. See HPTRM standard for fibercontent components and associated pull-out strength.

 - Anchors of HPTRM shall be set either with a sledge hammer or vibratory hammer to drive the anchor to their desired depth.

 - After the desired depth is achieved, secure the anchor assembly by swiftly pulling the cable through the anchor to their desired depth.

 - The remainder of the HPTRM shall be anchored with a row of staples/stakes (15 cm) apart in 30 cm on center.

 - HPTRM (4A) at the top of the side slopes must be anchored with a row of anchors/staples/stakes ~15 cm apart and 15 cm on center.

 - If using a self-tensioning option as detailed in the manual, a high-flow channel applications, a staple/stake check slot is recommended in high-flow channel conditions. Guided anchor should be embedded and installed into the soil to their desired depth.

 - Larger anchors may require more force to set the anchor. This can be achieved through using a temporary Permanent Anchoring System (PSR) instead of a wedge or a self-tensioning option as detailed in the manual. "Loose soil fill" is used in the term "flush fill" as defined in the manual. A high-flow channel applications, a staple/stake check slot is recommended in high-flow channel conditions. Guided anchor should be embedded and installed into the soil to their desired depth.
When your site requires the highest strength and performance available, protect your soils with a system that combines the RollMax™ VMax® Turf Reinforcement Mats (TRMs) with percussion earth anchors. The earth anchors reach deep into the soil to offer stabilization even in the worst conditions, while our TRMs provide permanent protection of soils and vegetation. Our variety of earth anchors are designed for durability and foolproof installation under extreme hydraulic stresses and adverse soil conditions (Table 1). And, when our earth anchors are used in combination with one of our high-performance TRMs, often unmatched performance.

EXPERIENCE YOU CAN RELY ON

Tensar North American Green is the world’s leading provider of performance-guaranteed erosion control solutions. For more than 25 years, our line of erosion and sediment control products has kept our customers on solid ground. The RollMax™ Systems’ family of Rolled Erosion Control Products (RECPs) is solid evidence of Tensar North American Green’s ongoing investment in innovation. Our short-term and long-term ECBs and TRMs keep you one step ahead of just about any erosion challenge. We have developed integrated systems and products with the sole objective to ensure absolute customer satisfaction. Our products are backed by the most thorough quality assurance practices in the industry.

For additional installation assistance, please call 800-TENSAR-1, visit www.tensarnagreen.com or e-mail info@tensarcorp.com and we will be happy to put you in touch with an erosion control specialist who can assist you.

<table>
<thead>
<tr>
<th>Earth Anchor Option</th>
<th>Tendon Type</th>
<th>Grip Type</th>
<th>Installation Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper Stop Sleeve</td>
<td>(3/32 in. x 36 in.)</td>
<td>X</td>
<td>Manually crimped to the stainless steel cable to secure the face plate.</td>
</tr>
<tr>
<td>Grip End Piece</td>
<td>(3/32 in. x 36 in.)</td>
<td>X</td>
<td>Three-dimensional, self-securing metal end piece that does not require manual crimping for tendon tensioning.</td>
</tr>
<tr>
<td>Wedge Grip Piece</td>
<td>(3/32 in. x 36 in.)</td>
<td>X</td>
<td>Self-securing end piece that installs flush to the face plate. Does not require manual crimping for tendon tensioning.</td>
</tr>
<tr>
<td>Aluminum Stop Sleeve</td>
<td>(3/32 in. x 36 in.)</td>
<td>X</td>
<td>Manually crimped to the galvanized cable to secure the face plate.</td>
</tr>
</tbody>
</table>

TABLE 1